

Drones for Active Sports Training & Monitoring

Prof. S. Suresh, SCE (Prof. N. Sundararajan, EEE) Cognitive Systems Group, Nanyang Technological University, Singapore

Outline of the talk

What are drones?

- Drones
 - Autonomous Unmanned Aerial Vehicle (UAV)
- Types of drone
 - Fixed wing: ArduPlane, Aeromapper
 - Rotary wing: Quadcopter, Helicopter
 - Hybrid: Vertical Takeoff Translational Vehicles
- Drones are classified based on weight, size, payload/range.
- Applications
 - Defense
 - Remote sensing/Aerial surveillance
 - Motion picture film making
 - Disaster relief
 - Logistics delivery
 - News

Autonomous quadcopter vide

Video courtesy: Motherboard

State-of-the-art in quadcopters

Surveillance Video courtesy: Travel Thailand

Quad at Cognitive Systems Group, SCE, NTU:

- Supported by Temasek Labs, NTU
- UAV carrying payload of 3.5 kg and endurance of
 20 minutes. (500 meter height and 2.5 km range)
- Carry 1.5kg front hanging geo-localization sensor.
- Performs wave maneuver for 360° view.

Commercially, UAV's claim their spot in surveillance and mapping

Mapping Video courtesy: Techno Systems

Project Funded by Temasek Labs, NTU

10-11 Nov, 2014

Cognitive Systems Group, SCE, NTU

Back

State-of-the-art in quadcopters

Advanced hover control Video courtesy: ETH - IDSC

Current research focuses on indoor flying with synchronized control & obstacle avoidance.

Video courtesy: Upenn – GRASP Lab

Quad playing ping-pong Video courtesy: ETH - IDSC

Vision based autonomous system capture UAV's states for efficient flight control system.

Coordinated game playing quad

Video courtesy: ETH - IDSC

Recent advancements in quadcopter

Cooperative flying with vision

Video courtesy: Cognitive Systems Group, SCE, NTU

Single nano quad stabilization with Kinect

Video courtesy: Cognitive Systems Group, SCE, NTU

Natural gesture control for ease of flying

Video courtesy: Cognitive Systems Group, SCE, NTU

Dhaksha project Video courtesy: MIT Anna University, Chennai, India

Mapping Video courtesy: Techno Systems

Cognitive Systems Group, SCE, NTU

Some Commercial Applications

The future of logistics is in the hands of UAV.

DHL on the left and Google

on the right delivering parcels

Courtesy: Google, Telegraph

Courtesy: DHL

Amazon delivering pizzas.

Pizza delivery ^{Video courtesy: Amazon} Cognitive Systems Group, SCE, NTU

8

Drones in active sports: Unexplored Opportunities?

Drones in active sports: Challenges

- Needs an expert to fly
 - Assembling and handling the UAV needs proper training.
 - Flying is a multi-fold problem.
 - Hand-eye co-ordination is the key.
 - Maneuvering the UAV coupled with handling the ground station need expertise.
 - Requirement: Able to fly with limited knowledge.
- Intelligent flight control system
 - Custom driven Maneuvers from application perspective for autonomous flying
 - Cooperative control for effective monitoring
 - Requirement: Seamless monitoring to control framework

Drones in active sports: Challenges

- Tracking a person/vehicle
 - Tracking the dynamics in the sports activities need special skills.
 - Attention to details of a player is important.
 - In cycling, tracking the dynamics of the cyclist will help improve the sport as a whole.
 - Detecting the speed during the turn of a rower in a rowing event is important.
 - Requirement: Dedicated vision system for a given sport
- CURRENT MAJOR LIMITATION
 - Off the shelf quads does not solve any of the above problems

OUR AIM:

PROVIDE A NATURAL GESTURE INTERFACE FOR MULTI-DRONE CONTROL.

PROVIDE A STABLE AND AUTONOMOUS CONTROL SCHEME FOR DRONES.

PROVIDE END-TO-END SOLUTION TO MONITOR A GIVEN SPORTING EVENT.

Natural gestures for flying

- Achieved by hand gestures and body movements.
- Leap motion[™] captures the hand gestures using the IR and sends the command back to the controller.
- Kinect[™] is used to capture the body movement and gestures.
- A customized glove can be used to capture the natural hand gestures.

Gesture

Nano quad

- Natural hand gesture is used to control the drone.
- Different signatures used for different control mechanism.
 - Here, "take-off" is mapped to hand-unfold
 - "Yaw" is mapped to the left/right movement of palm.
 - Holding the palm wide open is mapped to "hover".
 - Finally, hand-fold is mapped to "land".

Cognitive Systems Group, SCE, NTU

10-11 Nov, 2014

Gesture Interface for natural flying

Stable & autonomous flight control

Future Directions

- Monitoring
 - Sensor data and the feedback from the controls must be selfregulated and monitored intelligently.
- Intelligent control system
 - Gesture interaction to command for UAV
 - Gesture to multi-UAV control
 - Fully autonomous system
- Sports activities
 - Building customized drones for sports activities.
 - Possible trajectories based on the sports.
 - Possible gesture to video sensor command.

Team members

- Prof. Suresh Sundaram
- Prof. Narasimhan Sundararajan
- Mr. Badrinarayanan Rangarajan
- Mr. Aruneshwaran Rajasekaran
- Dr . Kartick Subramanian
- Final Year Project Students:
- Ms. Hsu Htet
- Mr. Gaurav Gupta
- Mr. Venugopalan Thiruvari (URECA)

Acknowledgement to Sponsors

- Temasek Labs, NTU
- SCE, NTU
- URECA, NTU

THANK YOU ③ Q & A

Contact:

Suresh Sundaram,

School of Computer Engineering,

Nanyang Technological University, Singapore.

Email: ssundaram@ntu.edu.sg